The Time-varying Parameter Model Revisited
نویسنده
چکیده
The Kalman filter formula, given by the linear recursive algorithm, is usually used for estimation of the time-varying parameter model. The filtering formula, introduced by Kalman (1960) and Kalman and Bucy (1961), requires the initial state variable. The obtained state estimates are influenced by the initial value when the initial variance is not too large. To avoid the choice of the initial state variable, in this paper we utilize the diffuse prior for the initial density. Moreover, using the Gibbs sampler, random draws of the state variables given all the data are generated, which implies that random draws are generated from the fixed-interval smoothing densities. Using the EM algorithm, the unknown parameters included in the system are estimated. As an example, we estimate a traditional consumption function for both the U.S. and Japan.
منابع مشابه
Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملMonetary Policy Reaction Functions in Iran: An Extended Kalman Filter Approach
Estimates of instrumental rules can be utilized to describe central bank's behavior and monetary policy stance. In the last decade, considerable attention has been given to time-varying parameter (TVP) specification of monetary policy rules. Constant-parameter reaction functions likely ignore the impact of model uncertainty, shifting preferences and nonlinearities of policymaker's choices. This...
متن کاملAdmissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملInvestigating the Impact of Time-varying Volatility of Macroeconomic Indices on the Predictability of Optimal Stock Portfolio Return in Tehran Stock Exchange
In this study, 3 models of Time-Varying Parameters (TVP), Dynamic Model Selection (DMS) and Dynamic Model Averaging (DMA) and a comparison with the Ordinary Least Squares (OLS) method in MATLAB in the time period 2003-2013 (with data on a monthly basis) are discussed. In the present study, the variables of unofficial exchange rate changes, interest rate changes and inflation in oil price foreca...
متن کاملInvestigating the Impact of Time-varying Volatility of Macroeconomic Indices on the Predictability of Optimal Stock Portfolio Return in Tehran Stock Exchange
In this study, 3 models of Time-Varying Parameters (TVP), Dynamic Model Selecting (DMS) and Dynamic Model Averaging (DMA) and their comparison via the Ordinary Least Squares (OLS) method in MATLAB in the time period 2003-2013 (monthly) are discussed. In the present study the variables of unofficial exchange rate changes, interest rate changes and inflation oil price forecast returns for stocks ...
متن کامل